57 resultados para Aspergillus

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole cells of the marine fungi Aspergillus sydowii Gc12, Penicillium raistrickii Ce16, P. miczynskii Gc5, and Trichoderma sp. Gc1, isolated from marine sponges of the South Atlantic Ocean (Brazil), have been screened for the enzymatic resolution of (+/-)-2-(benzyloxymethyl)oxirane (benzyl glycidyl ether; 1). Whole cells of A. sydowii Gc12 catalyzed the enzymatic hydrolysis of (R,S)-1 to yield (R)-1 with an enantiomeric excess (ee) of 24-46% and 3-(benzyloxy)propane-1,2-diol (2) with ee values < 10%. In contrast, whole cells of Trichoderma sp. Gc1 afforded (S)-1 with ee values up to 60% and yields up to 39%, together with (R)-2 in 25% yield and an ee of 32%. This is the first published example of the hydrolysis of 1 by whole cells of marine fungi isolated from the South Atlantic Ocean. The hydrolases from the two studied fungi exhibited complementary regioselectivity in opening the epoxide ring of racemic 1, with those of A. sydowii Gc12 showing an (S) preference and those of Trichoderma sp. Gc1 presenting an (R) preference for the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ca2+-calcineurin pathway affects virulence and morphogenesis in filamentous fungi. Here, we identified 37 CalA-interacting proteins that interact with the catalytic subunit of calcineurin (CalA) in Aspergillus fumigatus, including the nucleoside diphosphate kinase (SwoH). The in vivo interaction between CalA and SwoH was validated by bimolecular fluorescence complementation. A. fumigatus swoH is an essential gene. Therefore, a temperature-sensitive conditional mutant strain with a point mutation in the active site, SwoH(V83F), was constructed, which demonstrated reduced growth and increased sensitivity to elevated temperatures. The SwoH(V83F) mutation did not cause a loss in virulence in the Galleria mellonella infection model. Taken together these results imply that CalA interacts with SwoH. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazil contributes substantially to the global peanut production, and the state of Sao Paulo is the largest producer in the country. Peanut crops can be contaminated by Aspergillus flavus strains producing aflatoxins, which are highly toxic and carcinogenic. Thus, the production of high-quality peanuts is crucial both for the commercial peanut industry and as a matter of public health. In this study, we used amplified fragment length polymorphism analysis (AFLP) to investigate the genetic variability among A. flavus strains isolated from fresh peanuts harvested in four different regions in the state of Sao Paulo, and to determine whether the molecular genetic profiles correlated with aflatoxin production or sclerotia formation. AFLP analysis generated 78 fragments ranging from 27 to 365 base pairs in length. Thirteen percent were not polymorphic. Genotyping identified twelve groups of A. flavus. On the basis of the polymorphisms identified, similarity between the isolates ranged from 37% to 100%. Of all isolates collected, 91.7% produced aflatoxins and 83.9% produced small sclerotia. Statistical analysis failed to suggest any relationship between the presence of sclerotia and mean levels of aflatoxins B-1 and B-2. Furthermore, a dendrogram based on AFLP data revealed substantial genetic variability among the A. flavus strains, but showed no correlation between dendrogram groups separated by molecular genetic features and production of aflatoxins B-1 or B-2 or the formation of sclerotia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspergillus phoenicis biofilms on polyethylene as inert support were used to produce fructooligosaccharides (FOS) in media containing 25% (m/V) of sucrose as a carbon source. The maximum production of total FOS (122 mg/mL), with 68% of 1-kestose and 32% of nystose, was obtained in Khanna medium maintained at 30 degrees C for 48 h under orbital agitation (100 rpm). At high concentrations of sucrose (30%, m/V), the recovery of FOS was higher than that observed at a low concentration (5%, m/V). High levels of FOS (242 mg/mL) were also recovered when using the biofilm in sodium acetate buffer with high sucrose concentration (50%, m/V) for 10 h. When the dried biofilm was reused in a fresh culture medium, there was a recovery of approx. 13.7% of total FOS after 72 h of cultivation at 30 C, and 10% corresponded to 1-kestose. The biofilm morphology, analyzed by scanning electron microscope, revealed a noncompact mycelium structure, with unfilled spaces and channels present among the hyphae. The results obtained in this study show that A. phoenicis biofilms may find application for FOS production in a single-step fermentation process, which is cost-effective in terms of reusability, downstream processing and efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In silico comparison of 34 putative pks genes in Aspergillus niger strain CBS 513.88 versus A. niger strain ATCC 1015 genome revealed significant nucleotide identity (>95% covering a minimum of 99% of the gene sequence) for 31 of these genes (approximately 91%). A. niger CBS 513.88 harbors three putative pks genes (An01g01130, An11g05940, and An15g07920), for which nucleotide identity was not found in A. niger ATCC 1015. To compare the results of the in silico analysis with the in vivo situation, experimental data were obtained for a large number of A. niger strains obtained from different substrates and geographical regions. Three putative Os genes that were found to be variable between the two A. niger strains using bioinformatics tools were in fact strain-specific genes based on experimental data. The PCR amplification signals for the An01g01130, An11g05940, and An15g07920 pks genes were detected in only 97%, 71%, and 26% of the strains, respectively. Southern blot analyses confirmed the PCR data. Because one of the strain-specific pits genes (An15g07920) is located in a putative ochratoxin cluster, we focused our investigation on that region. We assessed the ochratoxin production capability of the 119 A. niger strains and found a positive association between the presence of this pia gene and the capability of the respective strain to produce ochratoxin. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aflatoxins can cause great economic losses and serious risks to humans and animals health. The largest aflatoxin producers belong to Aspergillus section Flavi and can occur naturally in food commodities. Studies showed that molecular tools as well as the type of sclerotia produced by the strains could be helpful for identification of Aspergillus species and could be correlated with levels of toxin production. The purpose of this work was to characterize the genetic diversity using AFLP technique, the type of sclerotia and the ability of aflatoxin production by isolated strains from corn of different origins in Brazil, and to verify whether qPCR based on aflR and aflP genes is appropriate for estimating the level of aflatoxin production. All the 75 strains were classified as A. flavus and the AFLP technique showed a wide intraspecific variability within them. Regarding sclerotia production, 34% were classified as S and 66% as L type. Among the aflatoxin-producers, 52.8% produced aflatoxin B-1, while 47.2% aflatoxins B-1 and B-2. Statistical analysis showed no correlation between sclerotia production and aflatoxigenicty, and no correlation between the phylogenetic clusters and aflatoxin production. Concerning the relative expression of aflR and aflP, Pearson's correlation test demonstrated low positive correlation between the expression of the aflR and aflP genes and the production of AFB(1) and AFB(2), but showed high positive correlation between aflR and aflP expression. In contrast to the other reference strains, A. oryzae ATCC 7282 showed no amplification of aflR and aflP. The results highlight the need for detection of reliable and reproducible markers with a high positive correlation with aflatoxin production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Cellulose and hemicellulose are quantitatively the most important structural carbohydrates present in ruminant diets. Rumen micro-organisms produce enzymes that catalyse their hydrolysis, but the complex network formed by structural carbohydrates and lignin reduces their digestibility and restricts efficient utilisation of feeds by ruminants. This study aimed to produce two enzymatic extracts, apply them in ruminant diets to determine the best levels for ruminal digestibility and evaluate their effects on in vitro digestibility. RESULTS: In experiment 1 a two-stage in vitro technique was used to examine the effects of different enzymatic levels of Aspergillus japonicus and Aspergillus terricola on tropical forages. Enzyme addition had minor effects on corn silage at the highest enzymatic level. In experiment 2 an in vitro gas production (GP) technique was applied to determine apparent in vitro organic matter digestibility and metabolisable energy. The addition of enzymes in GP showed interesting results. Good data were obtained using sugar cane and Tifton-85 hay supplemented with extracts of A. japonicus and A. terricola respectively. CONCLUSION: Overall, the study suggests that addition of crude extracts containing exogenous fibrolytic enzymes to ruminant diets enhances the effective utilisation of ruminant feedstuffs such as forages. Copyright (c) 2012 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An endo-1,5-arabinanase (abnA) encoding gene from Aspergillus niveus was identified, cloned and successfully expressed in Aspergillus nidulans strain A773. Based on amino acid sequence comparison, the 34-kDa enzyme could be assigned to CAZy GH family 43. Characterization of purified recombinant endo-1,5-arabinanase (AbnA) revealed that it is active at a wide pH range (pH 4.0-7.0) and an optimum temperature at 70 degrees C. The immobilization of the AbnA was performed via covalent binding onto agarose-modified supports: glyoxyl iminodiacetic acid-Ni2+, glyoxyl amine, glyoxyl (4% and 10%) and cyanogen bromide activated sepharose. The yield of immobilization was similar on glyoxyl amine and glyoxyl (96%), and higher than glyoxyl iminodiacetic acid-Ni2+ (43%) support. The thermal inactivation of these immobilized preparations showed that the stability of the AbnA immobilized on glyoxyl 4 and 10% was improved by 4.0 and 10.3-fold factor at 70 degrees C. The half-life of glyoxyl 4% derivative at 60 degrees C was >48 h (pH 5), 9 h (pH 7) and 88 min (pH 9). The major hydrolysis product of debranched arabinan or arabinopentaose by glyoxyl agarose-immobilized AbnA was arabinobiose. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The filamentous fungus Aspergillus nidulans has been used as a fungal model system to study the regulation of xylanase production. These genes are activated at transcriptional level by the master regulator the transcriptional factor XInR and repressed by carbon catabolite repression (CCR) mediated by the wide-domain repressor CreA. Here, we screened a collection of 42 A. nidulans F-box deletion mutants grown either in xylose or xylan as the single carbon source in the presence of the glucose analog 2-deoxy-D-glucose, aiming to identify mutants that have deregulated xylanase induction. We were able to recognize a null mutant in a gene (fbxA) that has decreased xylanase activity and reduced xInA and xInD mRNA accumulation. The Delta fbxA mutant interacts genetically with creAd-30, creB15, and creC27 mutants. FbxA is a novel protein containing a functional F-box domain that binds to Skp1 from the SCF-type ligase. Blastp analysis suggested that FbxA is a protein exclusive from fungi, without any apparent homologs in higher eukaryotes. Our work emphasizes the importance of the ubiquitination in the A. nidulans xylanase induction and CCR. The identification of FbxA provides another layer of complexity to xylanase induction and CCR phenomena in filamentous fungi. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The xylanase biosynthesis is induced by its substrate-xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and beta-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endophytic microorganisms live inside tissues of host plants apparently do not causing warning to them, and area promising source of bioactive molecules as antimicrobial and antitumoral drugs. In this work, we report the isolation of eugenitin from cultures of the endophyte Mycoleptodiscus indicus and its potential as additive for Aspergillus niveus glucoamylase activation. The glucoamylase hydrolytic activity increased twofold using 5 mM of eugenitin and this activation could be explained by the binding mode of eugenitin with the three-dimensional structure of glucoamylase. The in silica prediction of ligand binding sites revealed at least 9 possible interaction sites able to accommodate eugenitin on glucoamylase from Hypocrea jecorina. Besides, we evaluated the effect of pH and temperature on activity and stability, as well as in the hydrolysis of different substrates and kinetic parameters either in presence or absence of eugenitin. The results displayed by eugenitin as additive to glucoamylase activation are promising and provide novel perspectives for applications of fungal metabolites. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously observed that hypoxia is an important component of host microenvironments during pulmonary fungal infections. However, mechanisms of fungal growth in these in vivo hypoxic conditions are poorly understood. Here, we report that mitochondrial respiration is active in hypoxia (1% oxygen) and critical for fungal pathogenesis. We generated Aspergillus fumigatus alternative oxidase (aoxA) and cytochrome C (cycA) null mutants and assessed their ability to tolerate hypoxia, macrophage killing and virulence. In contrast to ?aoxA, ?cycA was found to be significantly impaired in conidia germination, growth in normoxia and hypoxia, and displayed attenuated virulence. Intriguingly, loss of cycA results in increased levels of AoxA activity, which results in increased resistance to oxidative stress, macrophage killing and long-term persistence in murine lungs. Thus, our results demonstrate a previously unidentified role for fungal mitochondrial respiration in the pathogenesis of aspergillosis, and lay the foundation for future research into its role in hypoxia signalling and adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biotransformation of the sesquiterpene lactone tagitinin C by the fungus Aspergillus terreus MT 5.3 yielded a rare derivative that was elucidated by spectrometric methods. The fungus led to the formation of a different product through an unusual epoxidation reaction between C4 and C5, formation of a C3,C10 ether bridge, and a methoxylation of the C1 of tagitinin C. The chemical structure of the product, namely 1 beta-methoxy-3 alpha-hydroxy-3,10 beta-4,5 alpha-diepoxy-8 beta-isobutyroyloxygermacr-11(13)-en-6 alpha,12-olide, is the same as that of a derivative that was recently isolated from the flowers of a Brazilian population of Mexican sunflower (Tithonia diversifolia), which is the source of the substrate tagitinin C. The in vitro cytotoxic activity of the substrate and the biotransformed product were evaluated in HL-60 cells using an MTT assay, and both compounds were found to be cytotoxic. We show that soil fungi may be useful in the biotransformation of sesquiterpene lactones, thereby leading to unusual changes in their chemical structures that may preserve or alter their biological activities, and may also mimic plant biosynthetic pathways for production of secondary metabolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspergillus fumigatus is a primary and opportunistic pathogen, as well as a major allergen, of mammals. The Ca+2-calcineurin pathway affects virulence, morphogenesis and antifungal drug action in A. fumigatus. Here, we investigated three components of the A. fumigatus Ca+2-calcineurin pathway, pmcA,-B, and -C, which encode calcium transporters. We demonstrated that CrzA can directly control the mRNA accumulation of the pmcA-C genes by binding to their promoter regions. CrzA-binding experiments suggested that the 5'-CACAGCCAC-3' and 5'-CCCTGCCCC-3' sequences upstream of pmcA and pmcC genes, respectively, are possible calcineurin-dependent response elements (CDREs)-like consensus motifs. Null mutants were constructed for pmcA and -beta and a conditional mutant for pmcC demonstrating pmcC is an essential gene. The Delta pmcA and Delta pmcB mutants were more sensitive to calcium and resistant to manganese and cyclosporin was able to modulate the sensitivity or resistance of these mutants to these salts, supporting the interaction between calcineurin and the function of these transporters. The pmcA-C genes have decreased mRNA abundance into the alveoli in the Delta calA and Delta crzA mutant strains. However, only the A. fumigatus Delta pmcA was avirulent in the murine model of invasive pulmonary aspergillosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspergillus flavus is the second most common cause of aspergillosis infection in immunocompromised patients and is responsible for the production of aflatoxins. Little is known about the population structure of A. flavus, although recent molecular and phenotypic data seem to demonstrate that different genetic lineages exist within this species. The aim of this study was to carry out a morphological, physiological, and molecular analysis of a set of clinical and environmental isolates to determine whether this variability is due to species divergence or intraspecific diversity, and to assess whether the clinical isolates form a separate group. The amdS and omtA genes were more phylogenetically informative than the other tested genes and their combined analysis inferred three main clades, with no clear distinction between clinical and environmental isolates. No important morphological and physiological differences were found between the members of the different clades, with the exception of the assimilation of D-glucosamine, which differentiates the members of the clade II from the others. (C) 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.